edexcel

Mark Scheme (Results)
Summer 2015

Pearson Edexcel GCE in Statistics 4 (6686/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UA042714
All the material in this publication is copyright
© Pearson Education Ltd 2015

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATI CS

General I nstructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for ‘knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or $d . .$. The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a
misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme									Marks
1. (a)	Store	A	B	C	D	E	F	G	H	B1
	Difference July-Jan	33	63	121	-60	-54	24	-19	33	
(b)	or $s_{d}{ }^{2}=\frac{1}{7}\left(28241-\frac{141^{2}}{8}\right)=3679.4 \ldots$ To test $\mathrm{H}_{0}: \mu_{d}=0$ against $\mathrm{H}_{1}: \mu_{d}>0$ (o.e.) Test stat $t=\frac{17.625-0}{\sqrt{\frac{3679.4 \ldots}{8}}}=0.8218 \ldots$ Critical value, $t_{7}=1.895$ Not in critical region therefore insufficient reason to reject H_{0} No significant evidence that on average stores sell more lottery tickets in July than in January Need assumption that the underlying distribution of the difference in sales in July and in January is normally distributed.									$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$
										B1
										M1A1cso
										B1
										A1ft
										Total 9
	Notes									
(a)	$1^{\text {st }} \mathrm{B} 1$ for differences all correct (o.e.)									
	$1^{\text {st }}$ M1 attempt to find $\bar{d}=\frac{\sum \text { "their } d "}{8}$									
	$2^{\text {nd }} \mathrm{M} 1$ attempting s_{d} or $s_{d}{ }^{2} \frac{1}{7}\left(\sum\right.$ "their $\left.d^{2} "-\frac{\left(\sum \text { "their } d "\right)^{2}}{8}\right)$									
	$3{ }^{\text {rd }} \mathrm{M} 1$ for attempting the correct test statistic									
	$1^{\text {st }}$ A1cso awrt 0.822 with no errors. $3^{\text {rd }} \mathrm{B} 1$ alternate method, p value of 0.219 . Allow 2.365 for 2 -tail test Final A1 need conclusion in context, need tickets July and January, ft their test stat and critical value NB difference of 2 means test gains no marks									
	B1 need differences to be normally distributed, not just normal distribution									

Question Number	Scheme	Marks
2. (a)	$\begin{array}{ccl} n=8 & \sum x=843 & \sum x^{2}=89211 \\ \therefore & \bar{x}=105.375 \\ & & s^{2}=\frac{8}{7}\left(\frac{89211}{8}-105.375^{2}\right)=54.2678 \ldots \end{array}$ or $s^{2}=\frac{1}{7}\left(89211-\frac{843^{2}}{8}\right)=54.2678 \ldots$ Confidence interval is given by $\begin{aligned} & \frac{7 \times 54.267 \ldots}{14.067}<\sigma^{2}<\frac{7 \times 54.267 \ldots}{2.167} \\ \therefore \quad & 27.004 \ldots<\sigma^{2}<175.299 \ldots \\ & 5.1966 \ldots<\sigma<13.240 \ldots \end{aligned}$	M1A1 M1B1 M1d A1 (6)
(b)	Need to assume underlying Normal distribution for weights of blocks of cheese.	B1
(c)	Lower limit of CI is $>5 \mathrm{~g}$ suggests that Fred needs training.	B1ft (1)
(d)	To test $\quad \mathrm{H}_{0}: \mu=100, \quad \mathrm{H}_{1}: \mu \neq 100 \quad(\mu>100)$ where μ is the mean weight of blocks of cheese Test statistic $\quad t=\frac{102.6-100}{\sqrt{\frac{19.4}{20}}}=2.6399 \ldots$ Critical value(s): $t_{19}=(\pm) 1.729$ (1.328) In critical region, therefore significant evidence to reject H_{0} and accept H_{1} Significant evidence that the mean weight of the blocks of cheese is not 100 g (more than 100 g)	B1 M1A1 B1 A1ft B1cso (6) Total 14
	Notes	
(a)	$\begin{array}{ll} \hline 1^{\text {st }} \mathrm{M} 1 \text { attempting } s \text { or } s^{2} & 1^{\text {st }} \mathrm{A} 1 \text { awrt } 54.3 \\ 2^{\text {nd }} \text { M1 for } \frac{7 s^{2}}{\chi^{2}} & \\ \text { B1 } 14.067 \& 2.167 & \end{array}$ $3^{\text {rd }}$ M1d Dept on previous M mark. Rearranging leading to interval for σ - must s A1 awrt 5.20 and 13.2 (allow 5.2) NB a correct interval gains full marks B1 ft on their CI must have Fred/He/employee (do not allow empoloyees) and They must have an interval in part(a) $1^{\text {st }}$ B1 Both hypotheses with μ. Allow one-tail $1^{\text {st }} \mathrm{M} 1 \frac{102.6-100}{\frac{s \text { or } s^{2}}{\sqrt{20}}}$ $1^{\text {st }}$ A1 awrt 2.64 $2^{\text {nd }} \mathrm{B} 1$ allow p value of 0.0161 in place of critical value. CV must follow from H $2^{\text {nd }} \mathrm{A} 1 \mathrm{ft}$ a correct statement - do not allow contradicting non context statement. $3{ }^{\text {rd }} \mathrm{B} 1$ cso need correct conclusion in context containing the words in bold from correct solution. For one tail need "more than 100g"	square root d training. H_{1} a fully

Question Number	Scheme	Marks
4. (a)	$\begin{aligned} \text { Power function } & =\mathrm{P}\left(\mathrm{H}_{0} \text { rejected }\right)=\mathrm{P}\left(X_{1} \geq 2\right)+\mathrm{P}\left(X_{1}=1\right) \times \mathrm{P}\left(X_{2} \geq 1\right) \\ & =1-(1-p)^{6}-6 p(1-p)^{5}+6 p(1-p)^{5} \times\left(1-(1-p)^{6}\right) \\ & =1-(1-p)^{6}-6 p(1-p)^{5}+6 p(1-p)^{5}-6 p(1-p)^{11} \\ & =1-(1-p)^{6}-6 p(1-p)^{11} \end{aligned}$	M1A1 A1cso
(b)	Size of test is value of power function when $p=0.05$ Size of test $=1-0.95^{6}-6 \times 0.05 \times 0.95^{11}=0.094268 \ldots \quad($ awrt 0.0943$)$	(3) M1A1
(c)	$\begin{aligned} \mathrm{E}[\text { number of eggs inspected }] & =12 \times \mathrm{P}\left(X_{1}=1\right)+6 \times \mathrm{P}\left(X_{1} \neq 1\right) \\ & =12 \times 6 \times 0.1 \times 0.9^{5}+6 \times\left(1-\left(6 \times 0.1 \times 0.9^{5}\right)\right) \\ & =8.1257 \ldots(\text { awrt } 8.13) \end{aligned}$	M1 A1 A1
(d)	$\mathrm{P}($ Type II error $\mid p=0.1)=1-($ value of power function when $p=0.1)$ $\mathrm{P}($ Type II error $\mid p=0.1)=1-\left(1-0.9^{6}-6 \times 0.1 \times 0.9^{11}\right)=0.7197 \ldots$ (awrt 0.720)	M1 A1
(e)	Prob of Type II error, accepting $p=0.05$ when it is actually 0.1 , unacceptably high, is large, therefore not a good test.	B1
		Total 11
	Notes	
(a) (b) (c) (d) (e)	M 1 for $\mathrm{P}\left(X_{1} \geq 2\right)+\mathrm{P}\left(X_{1}=1\right) \times \mathrm{P}\left(X_{2} \geq 1\right)$ or $1-\left(\mathrm{P}\left(X_{1}=0\right)+\mathrm{P}\left(X_{1}=1\right) \times \mathrm{P}\left(X_{2}\right.\right.$ correct line of working A1 a correct line of working before the final answer A1 fully correct solution no errors. M1 attempt to subst 0.05 into (a) M1 for $12 \times \mathrm{P}\left(X_{1}=1\right)+6 \times \mathrm{P}\left(X_{1} \neq 1\right)$ A1 $12 \times 6 \times p \times 0.9(1-p)^{5}+6 \times\left(1-\left(6 \times p \times(1-p)^{5}\right)\right.$ M1 $1-\left(1-(1-p)^{6}-6 \times p \times(1-p)^{11}\right)$ B1 idea that the Probability of a Type II error is too high or the power is too low is not good/powerful or test needs changing	0) oe or a w so the test

6. (a)

$$
\mathrm{E}[A]=\frac{1}{2}\left(\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\mathrm{E}\left[X_{3}\right]+\mathrm{E}\left[Y_{1}\right]+\mathrm{E}\left[Y_{2}\right]=\frac{1}{2}\left(3 \times \frac{\mu}{3}+2 \times \frac{\mu}{2}\right)=\mu\right.
$$

Therefore A is an unbiased estimator

$$
\mathrm{E}[B]=\frac{3 \mathrm{E}\left[X_{1}\right]}{2}+\frac{2 \mathrm{E}\left[Y_{1}\right]}{3}=\frac{3}{2} \times \frac{\mu}{3}+\frac{2}{3} \times \frac{\mu}{2}=\frac{5 \mu}{6}
$$

Therefore B is biased with bias (-) $\frac{\mu}{6}$

$$
\mathrm{E}[C]=\frac{1}{3}\left(3 \mathrm{E}\left[X_{1}\right]+4 \mathrm{E}\left[Y_{1}\right]\right)=\frac{1}{3}\left(\frac{3 \mu}{3}+\frac{4 \mu}{2}\right)=\mu
$$

Therefore C is an unbiased estimator
(b) Best estimator is unbiased estimator with least variance

$$
\begin{align*}
\operatorname{Var}(A) & =\frac{1}{4}\left(\operatorname{Var} X_{1}+\operatorname{Var} X_{2}+\operatorname{Var} X_{3}+\operatorname{Var} Y_{1}+\operatorname{Var} Y_{2}\right) \tag{5}\\
= & \frac{1}{4}\left(3 \times 3 \sigma^{2}+2 \times \frac{\sigma^{2}}{2}\right)=\frac{5 \sigma^{2}}{2}
\end{align*}
$$

$\operatorname{Var}(C)=\frac{1}{9}\left(9 \operatorname{Var} X_{1}+16 \operatorname{Var} Y_{1}\right)=\frac{1}{9}\left(9 \times 3 \sigma^{2}+16 \times \frac{\sigma^{2}}{2}\right)=\frac{35 \sigma^{2}}{9}$
Therefore A is a better estimator of μ (smaller variance)
(c)

$$
\begin{aligned}
\mathrm{E}[D] & =\frac{1}{k}\left(2 n \times \frac{\mu}{3}+n \times \frac{\mu}{2}\right)=\mu \\
k & =\frac{2 n}{3}+\frac{n}{2}=\frac{7 n}{6}
\end{aligned}
$$

(d) $\quad \operatorname{Var}(D)=\frac{1}{k^{2}}\left(2 n \times 3 \sigma^{2}+n \times \frac{\sigma^{2}}{2}\right)=\frac{1}{k^{2}} \times \frac{13 n \sigma^{2}}{2}$

$$
\operatorname{Var}(D)=\frac{36}{49 n^{2}} \times \frac{13 n \sigma^{2}}{2}=\frac{234 \sigma^{2}}{49 n}
$$

Therefore $\operatorname{Var} D \rightarrow 0$ as $n \rightarrow \infty$, therefore D is a consistent estimator
(e) Want

$$
\frac{234 \sigma^{2}}{49 n}<\frac{5 \sigma^{2}}{2}
$$

Therefore

$$
\frac{234}{49} \times \frac{2}{5}<n
$$

$n>1.910 \ldots$
So minimum value is $n=2$

A1
A1

A

(a)	Notes
M1 for a correct method for $\mathrm{E}(\mathrm{A})$ or $\mathrm{E}(\mathrm{B})$ or $\mathrm{E}(\mathrm{C})$	
A1 for each correct expectation with a correct method	
B1ft bias of B , condone missing - sign. Do not allow a bias of 0	
(b)	M1 Use of $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$ and subst $3 \sigma^{2}$ for $\operatorname{Var}(X)$ and $\frac{\sigma^{2}}{2}$ A1 for each correct variance B1dft their variances. Dep on m1 being awarded. If no variances given then V 0 M1 attempts $\mathrm{E}(D)$ and puts $=$ to μ (may be implied)
(c)A1 for $\mathrm{E}(D)$ (d)M1 for $\frac{1}{k^{2}}\left(2 n \times 3 \sigma^{2}+n \times \frac{\sigma^{2}}{2}\right)$ or $\frac{1}{k^{2}} \times \frac{13 n \sigma^{2}}{2}$ M1d for subst in k A1 Correct $\operatorname{Var}(D)$ A1dd Need correct reason for being a consistent estimator dep on previous method marks being awarded M1 for forming an inequality with their $\operatorname{Var}(D)<$ their best estimator leading to n (e)	

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

